Maintenance of horse embryonic stem cells in different conditions
Authors
Abstract:
Embryonic stem cells (ESCs) are originally derived from the ICM of blastocysts and are characterized by their ability to self-renew and their pluripotencies. Only a few reports have been published on ESC isolations and line establishment in animals, even fewer in horses. However, it is still important to isolate equine ESCs for animal biotechnology and therapeutic applications. In the present study, we tried to derive horse ESC lines from the ICM of blastocysts fertilized in vivoand maintain their pluripotencies in different conditions. The primary horse ESCs were able to self-renew when they were cultured in basic medium on γ-irradiated MEFs. After 15 passages, immunohistochemistry of the putative horse ESCs showed that some cells in the colonies were positive for Oct-4, SSEA-1, GCTM-2, TRA-1-60 and TRA-1-81. Moreover, to optimize the culture conditions, these putative horse ESCs were cultured in basic medium supplemented with human leukemia inhibitory factor (hLIF) only, human basic fibroblastic growth factor (hbFGF) only, or hbFGF plus hLIF with or without heterologous (MEF) feeder cells. Based on our results, the heterologous feeder (MEF) cells are necessary to maintain the undifferentiated state for horse ESCs, and ESC-like cell morphology of horse ESCs were well maintained in the basic medium supplemented with or without hLIF. This result suggested that hLIF was neither prerequisite nor negative for maintenance of horse ESCs; bFGF seemed to be negative for maintenance of horse ECSs and the combination of hLIF and bFGF was unable to improve the culture condition.
similar resources
maintenance of horse embryonic stem cells in different conditions
embryonic stem cells (escs) are originally derived from the icm of blastocysts and are characterized by their ability to self-renew and their pluripotencies. only a few reports have been published on esc isolations and line establishment in animals, even fewer in horses. however, it is still important to isolate equine escs for animal biotechnology and therapeutic applications. in the present s...
full textComparing the Expression Levels of Alkaline Phosphatase, Gfra1, Lin28, and Sall4 Genes in Embryonic Stem Cells, Spermatogonial Stem Cells, and Embryonic Stem-Like Cells in Mice
Background and purpose: Spermatogenesis is a well-organized process that is influenced by a variety of factors. Alkaline phosphatase, and Gfra1, Lin28, and Sall4 genes are among the key players in this interconnected process. This study aimed to investigate the expression levels of Gfra1, Lin28, and Sall4 genes in embryonic, spermatogonial, and embryonic stem-like (ES-like) cells in mice. Mate...
full textDifferentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells
Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...
full textThe Effect of chick Embryonic Somites on Neural Rosette Formation in Mouse Embryonic Stem Cells
purpose: The aim of the present study is to understand if EBs can generate neural rosette upon co-culture with chick embryo somites. Materials and Methods: The mouse ES cells, line Royan Bl, were cultured in hanging drops to induce embryoid bodies (EBs) formation. Somites were isolated from the chick embryos and then embedded in alginate solution. Finally, alginate beads containing somites were...
full textMesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles
Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...
full textDefining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology.
The optimization of defined growth conditions is necessary for the development of clinical application of human embryonic stem cells (hESCs). Current research has focused on developing defined media formulations for long-term culture of hESCs with little attention on the establishment of defined substrates for hESC proliferation and self-renewal. Presently available technologies are insufficien...
full textMy Resources
Journal title
volume 11 issue 3
pages 239- 248
publication date 2010-09-20
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023